
Abstract - Transient-Evoked Otoacoustic Emissions 
(TEOAE) are nonstationary acoustic signals coming from the 
inner ear after acoustic stimulation by clicks and they are 
applied as tools in newborn hearing screening programs to allow 
the early identification of hearing loss and the consequent 
diagnosis and intervention. In any screening program, the 
duration of each test is a crucial parameter. For TEOAE, it is 
strongly influenced by the acquisition procedure, typically based 
on classical synchronous averaging technique over 260 sweeps, 
with an average acquisition time of about 2-3 minutes. This 
paper present an application of Principal Component Analysis 
(PCA) to rapidly-acquired TEOAE (averaged over only 10, 60 
or 100 sweeps) for the detection of this type of cochlear response. 
The PCA approach is shown to be able to enhance the signal-to-
noise ratio (SNR) and, in turn, to allow a correct detection of the 
responses. Results of the application of this approach in 
comparison with responses recorded, from the same ears, with 
classical technique will be shown. The reduction of the 
acquisition time to about one forth with respect to its typical 
value and with approximately the same final signal-to-noise 
ratio will be discussed. 
Keywords - Principal Component Analysis; Fast Acquisition; 
Otoacoustic Emissions 

 
I. INTRODUCTION 

 

Transient-Evoked Otoacoustic Emissions (TEOAE) are 
nonstationary acoustic signals coming from the cochlea in 
response to short transient stimuli, such as clicks and tone-
bursts [1]. These responses can be recorded from the ear 
canal of all normal adults, children and neonates, and are 
increasingly used as a clinical test to assess the integrity of 
the peripheral organ [2]. In particular in newborns, TEOAE 
can be recorded from all normal ears shortly after birth, and, 
for this reason, newborn hearing screening protocols based on 
the measure of TEOAE are now largely implemented [3]. 
TEOAE are known to be characterized by an extremely high 
inter-subject variability and intra-subject repeatability. In 
particular, the inter-subject variability makes the 
identification of the true emission a crucial task when 
otoacoustic emissions are utilized in hearing screening 
programs. Their identification is commonly performed with 
the help of some simple statistical measure such as the 
correlation between replicate trials, and, partially, by visual 
inspection [4]. The rapid diffusion of TEOAE-based hearing 
screening programs has increased the importance of the 
search of any method capable of increasing the objectivity 
and sensitivity of emission identification. In particular, the 
human eye more readily detects the presence or absence of an 
otoacoustic emission when it simultaneously sees more than 
one response collected at different stimulus levels, comparing 

some mutual features within a set of traces. In clinical 
practice, this procedure has not yet found widespread 
acceptance due to the long acquisition time needed for the 
synchronous averaging technique.  

This paper aims to present a method, based on a Principal 
Component Analysis (PCA) approach, to increase the signal-
to-noise ratio (SNR) in a set of click-evoked otoacoustic 
emissions recorded averaging only a few sweeps. The main 
goal is that of reducing the acquisition time with respect to 
the classical procedure typically based on synchronous 
averaging of a larger number of sweeps. 

 
II. METHODOLOGY 

 
The PCA Approach 

Principal component analysis (PCA) involves a 
mathematical procedure that transforms a number of 
(possibly) correlated variables into a (smaller) number of 
uncorrelated variables called principal components. The first 
principal component accounts for as much of the variability 
in the data as possible, and each succeeding component 
accounts for as much of the remaining variability as possible. 
PCA is a well-established tool in the interpretation of 
analytical data. It depicts separate and close observations 
from a small-uncorrelated variable set.  

When the data is constituted by a set of waveforms, the 
analysis of the relations between the waveforms in the set 
could be performed to determine some common 
characteristics. To this purpose, one should describe them 
with a minimum number of parameters. One typical approach 
is based on the linear representation of the set. The general 
form of a linear representation of a set of N data waveforms s 
(t) where n ranges from 1 to N, is given by: 
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where fm(t) is the mth-basic waveform and cnm  is the 
weighting coefficient, which represents the contribution of 
the mth-basic waveform to the nth-data waveform. Each data-
waveform can be computed by the knowledge of the M basic 
waveforms and M weighting coefficients. The M basic 
waveforms with the weighting coefficients can be estimated 
using the PCA approach [5]. 

Let us consider the matrices S [N rows x T columns] of 
the s(t) data waveforms, C [N x M] of the weighting 
coefficients and F [M x T] of the basic waveforms. Thus, 
relation (1) can be written as: 
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The basic waveforms F are typically constrained to be an 
orthonormal set. Considering now the correlation matrix R 
computed on the data waveforms S, the corresponding 
eigenvalue diagonal matrix, ë, and the associate eigenvector 
matrix U, one could easily demonstrate [5] that: 

 λUC =  (3) 

 SUF '1
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where U' is the transpose of matrix U. 
Now one should consider that a commonly used measure 

of the size of a signal waveform is its power Pn. Considering 
Eq. (1) and using the orthogonality relation for the basic 
waveforms, one should find: 
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A measure of the importance of a basic waveform is the 
power it contributes to the total power of the entire set of 
waveforms. This contribution, considering also Eq. (3), can 
be denoted by 
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The purpose of developing the theory of linear expansions 
is that it permits finding expansions that hopefully will 
perfectly reconstruct S utilizing significantly fewer basic 
waveforms F. From Eq. (6) one can easily infer that the 
eigenvalue ëm represents the contribution of the mth basic 
waveform to the total power in the set of data waveforms. It 
then becomes obvious that the most important basic 
waveforms to use in representing the experimental 
waveforms are those corresponding to the largest eigenvalues. 
Thus the eigenvalues can be used to infer the dimensionality 
of the signal space.  

The PCA Approach For Fast Acquisition of TEOAE 

The PCA approach described above is applied here to the 
fast acquisition of a set of TEOAE recorded from the same 
ear, during the same test session at different stimulus levels. 
On a practical ground a set of otoacoustic emissions, which 
were acquired at different stimulus intensity levels is 
considered as matrix S. Each set was composed by 11 
responses from the same ear at decreasing stimulus levels 
(see below) and compiled into a 2D-array resulting in a 
matrix of 11 rows and 512 columns (see the examples in Fig. 
1). Responses to different stimulus intensities were arranged 
in rows and the post-stimulus time changes in columns.  
Following Eq. (1), the set of otoacoustic emissions S can be 
considered as the result of the product between a matrix F of 

basic waveforms and a matrix C of weighted coefficients. 
Hence, considering, as stated before, that the highest 
eigenvalues are responsible of the most of the power of the 
responses and, on the contrary, the lowest eigenvalues can be 
related to noise, one could set at zero the latter ones, sieving 
the basic waveforms responsible for the actual otoacoustic 
response from other components due to noise. A set of signals 
�  can be reconstructed, constituted by the original set of 
emissions S without the contribution of noise components, 
hence increasing the SNR.  

In order to evaluate the performances of the PCA 
approach as a whole and identify the optimal setting of the 
parameters, the Similitude was used, defined as the value of 
the correlation function at zero-lag between a reference set (in 
the following Golden Standard (GS)) and each rapidly-
acquired set, before and after PCA approach. The reference 
set comprises the responses recorded from the same ear by 
means of the classical averaging procedure (average over 260 
sweeps). Similitude was computed in a time window from 6 
to 18 ms. 

TEOAE Response Acquisition 

TEOAE were collected from 15 normal ears of 9 adults 
with an ILO88 apparatus (Otodynamics Ltd.), with standard 
adult ILO probes. The recordings were processed on-line with 
the ILO88 default procedure (sample frequency 25000 
samples/s, resulting in 512 sampled points, windowing from 
2.5 to 20 ms). TEOAE were recorded using the derived 
nonlinear mode for acoustic artifact reduction [6]. Clicks 
were used as stimuli with intensity ranging from 53 to 83 dB 
SPL, step of 3 dB, for a total number of 11 recordings per ear. 
For each response, two replicate recordings (A and B) were 
collected at the same recording conditions. For each test 
session, four types of responses were recorded: one reference 
set (Golden Standard GS), consisting of an average of 260 
sweeps (typical in clinical practice) and three different 
rapidly-acquired set of responses, averaged over 10, 60 and 
100 sweeps, respectively. All responses were collected during 
one single recording session, and if possible, without 
removing the probe from the ear canal, to maintain almost the 
same recording conditions.  

The applied protocol could be summarized as follows: 

1. Recording of the four set of 11 TEAOE responses from 
the same ear at decreasing stimulus levels.  

2. Computation of the correlation matrix of S. The 
correlation matrix was computed by the cross covariance 
between the nth and the kth waveforms, in order to reflect 
differences in signal intensity.  

3. Computation of the corresponding eigenvalue diagonal 
matrix, ë, and the associate eigenvector matrix U. 

4. Zeroing all the eigenvalues but the highest two.  
5. Computation of C and F by Eq. (3) and Eq. (4), to obtain 

� , estimation of S. 
6. Comparison of �  with the GS set and measuring the 

performances of the PCA approach by the Similitude. 



III. RESULTS 
 

Fig. 1 shows an example (Ear #9 - left) of a rapidly 
acquired set of TEOAE responses (averaged over 60 sweeps) 
to stimuli at intensities from 53 to 83 dB SPL before (on the 
left) and after (on the right) the application of the PCA 
approach.  
 

 
 

Fig. 1. An example of a set of TEOAE (Ear #9, responses averaged over 60 
sweeps) before (on the left) and after  (on the right) PCA processing. The 
responses were recorded t different stimulus intensities, from 53 (bottom 

trace) to 83 dB SPL (top trace). For each trace, A and B replicates are shown 
superimposed. 

Fig. 2 shows the average Similitude for all 15 recordings 
over stimulus intensity computed for all three rapidly-
acquired set of recordings (10, 60 and 100 sweeps). The 
average Similitude for the 60-sweep and 100 sweep set ranges 
from 49% at the lowest to 90% at the highest stimulus levels, 
whereas the 10 sweep set, with a very low signal-to-noise 
ratio before PCA processing, shows figures ranging from 5% 
to 53% at the lowest and highest stimulus intensities 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Similitude as a function of the stimulus intensity of the rapidly 
acquired set of responses averaged over 10, 60 and 100 sweeps with respect 

to the GS set. The figures are relative to the average over all ears. 
 

The minimum dimension of each set, i.e., the minimum 
number of TEOAE responses that should be collected in 
order to obtain a satisfactory application of PCA, is a crucial 
parameter for the practical application of the procedure. Also 
in this case, the Similitude between the GS and the rapidly 
acquired set of signals was observed. PCA was applied to 
three reduced set of three, four and five responses (from 71 to 
83 dB SPL) collected from each ear. The average Similitude 
is shown in Fig. 3. In any case, the maximum difference of 
the Similitude is of 6 PP whereas, at the highest stimuli, the 
Similitude reaches approximately the 90% and there is 
practically no difference in applying PCA over a set of 3, 4 or 
5 signals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Similitude as a function of the stimulus intensity of the rapidly-
acquired set of responses averaged over 60 sweeps with respect to the GS set 
changing the number of TEOAE responses in the set. The figures are relative 

to the average over all ears. 
 

IV. DISCUSSION AND CONCLUSION 
 

The reduction of the acquisition time of TEAOE is crucial 
for the use of otoacoustic emission both in clinical practice 
and as tool for newborn hearing screening programs (see, 
e.g., [7]).  

This paper presents an innovative method to collect a set 
of otoacoustic responses with a substantial reduction in 
acquisition time. The method is based on compiling a rapidly 
acquired set of responses (averaged over a number of sweeps 
lower than the classical 260, typical in clinical practice) and 
applying a PCA approach in order to increase the SNR. As an 
example, one can record in about the same acquisition time 
either one otoacoustic response classically recorded averaging 
260 sweeps or four responses at different stimulus intensity 
levels averaged over only 60 sweeps.  

To provide a benchmark of the PCA approach 
performances, Similitude was introduced. The comparison 
between these metrics estimated in all 15 ensembles of 
recordings before and after PCA processing, with respect to 
the Golden Standard provided evidence that the use of PCA 
produces no loss of information in the set of data and that the 
comparison between the waveforms of the PCA processed 
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and those of the GS confirmed that signal morphology and 
latency were fairly well preserved. 

However, the effectiveness of this procedure strongly 
depends on the SNR of the original rapidly acquired set of 
data. Averaging only 10 sweeps usually yielded a very low 
SNR (Fig. 2), with no appreciable increase in Similitude after 
PCA processing. Therefore, it is advisable to apply the 
described approach only to set of data with sufficiently high 
SNR, which for the type of signals addressed by this study is 
typically achieved with an average of at least 60 sweeps. 

Finally, the results of this study suggest that the rapid-
acquisition of only three responses at high stimulus levels 
could be sufficient to obtain satisfactory performances from 
the PCA approach. In that sense, the PCA approach allows 
the collection of three responses at different stimulus levels in 
less than the time of the classical "single shot" (i.e., only one 
response at stimulus level of 80 dB SPL), used in typical 
TEOAE-based newborn hearing screening program. 
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